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Abstract
We analyse the dynamics of adsorbed molecules within the bulk-mediated
surface diffusion framework. We consider that the particle’s desorption
mechanism is characterized by a non-Markovian process, while the particle’s
motion in the bulk is governed by Markovian dynamics, and also include the
effect of a Markovian absorption probability on the surface. We study this
system for the diffusion of particles in a semi-infinite lattice, analysing the
return probability to the reference absorptive plane as well as the mean return
time to such a surface. Comparisons with numerical simulations show an
excellent agreement.

1. Introduction

Among the many problems studied in material science, the dynamics of adsorbed molecules
at an adsorbing surface is a fundamental issue in interface science and is crucial to a number
of emerging technologies [1] (for instance, see [2–6] and references therein). Recently, the
mechanism called bulk-mediated surface diffusion has been identified and explored [7, 8]. The
importance of bulk–surface exchange in relaxing homogeneous surface density perturbations
is experimentally well established [9–15]). This mechanism typically arises at interfaces
separating a liquid bulk phase and a second phase which may be either solid, liquid, or gaseous.
Whenever the adsorbed species is soluble in the liquid bulk, adsorption–desorption processes
occur continuously, generating a surface displacement because desorbed molecules undergo
Fickian diffusion in the liquid’s bulk, and are later re-adsorbed elsewhere. When this process
is repeated many times, an effective diffusion results for the molecules on the surface.

Usually the studies performed in this type of system are done within the framework of
a master equation scheme [7, 8, 16], where the particle’s motion through the bulk and the
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adsorption–desorption processes are Markovian. In a series of recent papers we have shown
some of the most important features of this phenomenon (however, it must be stressed that
this study corresponds to the low particle density limit) [2–6]. In particular, by studying
the variance 〈r 2(t)〉plane of the position �r ≡ (x, y) on the interface, or the conditional
probability P(z = 1; t) ≡ ∑

x,y P(x, y, z = 1; t|0, 0, 1; t = 0) to find the particle on
the interface at time t , if it was initially at (0, 0, 1), through both analytical and numerical
methods, the following results were obtained. For the case of a semi-infinite or unbounded
bulk [2]

• for t → ∞, the effective diffusion on the interface (first layer of the lattice) is always sub-
diffusive (the variance of the position grows as t1/2) regardless of the desorption rate δ.
Similarly, the probability of finding the particle on the interface at time t decays as t−1/2,
independently of δ;

• at finite times, the growth of the variance can be fitted by a tε law. The exponent ε depends
on the range of time considered and the values of the adsorption and diffusion constants,
increasing rapidly as δ decreases and saturating at a value compatible with the one reported
in [7, 8].

For the finite or bounded bulk case [3], we have investigated the transition from the multilayered
to unbounded bulk regime, and found that

• there exists an optimal number of layers that maximizes 〈r 2(t)〉plane on the interface
(which is a measure of the effective diffusivity), and up to about that thickness, the long-
time effective diffusivity on the interface has normal character, and crosses over abruptly
towards a sub-diffusive behaviour as the number of layers increases further.

It is worth remarking here that for an arbitrary (finite) number of layers, due to the highly
complicated dependence of the functions on s, the Laplace transform usually cannot be
analytically inverted. This forced us to apply numerical inversion methods whose efficacy
has been tested—with excellent results—not only against analytically solvable cases, like the
bilayer one, but also against Monte Carlo simulations.

For the finite and infinite bulk cases, we have also investigated the situation when
the particle’s desorption is characterized by a non-Markovian process, while the particle’s
adsorption and its motion in the bulk are governed by a Markovian dynamics. We have also
analysed the effect of a biased behaviour for the motion along the vertical axis, that is, the effect
of some external field normal to the interface. We have found that [4–6]

• for any non-Markovian desorption waiting time density with a finite first moment, the
long-time behaviour of both 〈r 2(t)〉plane and P(z = 1, t) is the same as in the Markovian
case and only depends on the first moment of the waiting time function ψ(t);

• it was analytically shown that, when the waiting time density for desorption has an infinite
first moment, an asymptotic sub-diffusive regime appears for all values of ν (a parameter
that characterizes the behaviour of the ‘tail’ of ψ(t), 0 < ν < 1), except for ν = 1

2 , where
normal diffusion takes place;

• the asymptotic behaviour under the presence of an external bias was obtained in two cases:
a desorption waiting time density with a finite or an infinite first moment. Asymptotic
sub-diffusive regimes, or cases where normal diffusion takes place, have been
observed. However, from our analysis we have not obtained any kind of super-diffusive
behaviour.

In this work we address the dynamics of adsorbed molecules when, in addition to the
particle’s desorption mechanism being characterized by a non-Markovian process (while the
particle’s motion in the bulk is governed by a Markovian dynamics), there is a biased behaviour
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for the motion along the vertical axis (that is, we consider the effect of some external field
normal to the interface) and we consider the effect of an absorption probability. This is
probably the most simple way to take account of the interaction with the surface leading to
adsorption within the master equation framework. Diffusion in the presence of a biasing field
is of great interest in several areas such as positron tomography [17], where the addition of
a strong electric field perpendicular to the surface leads to greater sample penetration, the
analysis of wetting layer growth under the action of a uniform gravitational field [18], particle
segregation due to shaking in a gravitational field [19], and the steady-state regime due to a
small field in two-dimensional diffusing reactants [20]. It is well known that a non-Markovian
desorption process can occur when the surfaces contains ‘deep traps’, for capture and re-
emission from surfaces that contain sites with several internal states such as the ‘ladder trapping
model’, in proteins with active sites deep inside the matrix, etc [21, 22].

It is worth remarking that, when non-Markovian processes are present, it is necessary to
resort to generalized master equations. These equations are characterized by a ‘memory kernel’
and may be related univocally with a continuous time random walk scheme (for instance, see
the paper by Montroll in [23]). In addition, the absorption probability is, in general, different
from the diffusive constant in the bulk, and takes into account the interaction between the
particle and the surface.

The main goal of the present work is to study the influence of such an absorption
probability—in addition to the non-Markovian desorption and together with the indicated
biased dynamics—on the return probability to the interface z = 1 as well as the mean return
time. The first passage time density (FPTD) and the related first return time density (FRTD) are
examples of properties that were first analysed by Polya within the context of a lattice random
walk [24]. Recently, various generalizations of the original Polya problem have been solved
in a large number of areas of statistical physics [25], including diffusion in local and global
fluctuating systems [22, 26–30], optimal search strategies [31], and many others.

Here, we present an evaluation of the FRTD to the original (z = 1) plane. For that
purpose we calculate the temporal evolution of P(z = 1, t), which (as indicated above) is
the conditional probability of finding the particle on the surface at time t since the particle was
there at t = 0. However, we reduce the previously exploited set of master equations governing
the behaviour of P(z = 1, t) (that is, the probability of finding the particle on the interface at
time t , if it was initially at z = 1 at time t = 0), eliminating the detailed information about the
diffusion on each plane.

In the next section we formally present the model, in terms of a generalized master equation
which describes the particle’s dynamics through the bulk and surface, and its desorption. We
indicate the differences that are introduced into the formalism respect to the previous studies.
In the following section we discuss the obtention of the return probability and mean return
time as well as some asymptotic results. After that, we present some numerical results for the
return probability and the conditional probability of finding the particle on the surface, and its
comparison with numerical simulations. Finally, in the last section we discuss the results and
present some conclusions.

2. The adsorption–desorption model

2.1. Generalized master equation

We consider our model for the case of biased behaviour, non-Markovian desorption, and a
given Markovian adsorption probability. We use the same framework as in [4–6], writing for
P(n,m, z = 1; t|0, 0, 1; t = 0); the probability of finding the particle on the interface at time t
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if it was initially at (0, 0, 1), that we indicate by P(n,m, 1; t); the following generalized master
equation

Ṗ(n,m, 1; t) = δ1 P(n,m, 2; t) −
∫ t

0
dt ′ K (t ′)P(n,m, 1; t − t ′),

+ α1[P(n − 1,m, 1; t)+ P(n + 1,m, 1; t)− 2P(n,m, 1; t)]
+ β1[P(n,m − 1, 1; t)+ P(n,m + 1, 1; t)− 2P(n,m, 1; t)], for l = 1

Ṗ(n,m, 2; t) =
∫ t

0
dt ′ K (t ′)P(n,m, 1; t − t ′)

+ γ1 P(n,m, 3; t) − γ2 P(n,m, 2; t) − δ1 P(n,m, 2; t)

+ α[P(n − 1,m, 2; t)+ P(n + 1,m, 2; t)− 2P(n,m, 2; t)]
+ β[P(n,m − 1, 2; t)+ P(n,m + 1, 2; t)− 2P(n,m, 2; t)], for l = 2

Ṗ(n,m, l; t) = α[P(n − 1,m, l; t)+ P(n + 1,m, l; t)− 2P(n,m, l; t)]
+ β[P(n,m − 1, l; t)+ P(n,m + 1, l; t)− 2P(n,m, l; t)]
+ γ1[P(n,m, l + 1; t)− P(n,m, l; t)]
+ γ2[P(n,m, l − 1; t)− P(n,m, l; t)], for l � 3 (1)

where α and β are the transition probabilities per unit time through the bulk in the x , y
directions respectively; δ1 is the transition probability from any site on plane z = 2 to the
plane z = 1 (in other words, the ‘adsorption’ probability); while γ1 and γ2 are the transition
probabilities, per unit time, from any point of the planes z = l + 1 (with l = 2, 3, . . .)
to the plane z = l, and from plane z = l (with l = 2, 3, . . .) to the plane z = l + 1,
respectively. The case γ1 	= γ2 indicates a biased behaviour, that is, the presence of an external
field.

It is important to note that the model presented in equation (1) allows for the possibility
that the particles can move in the plane z = 1 with temporal frequencies α1 in the x-
direction and β1 in the y-direction. If these temporal frequencies are equal to zero, the
motion through the z = 1 plane is exclusively due to the dynamics across the bulk. K (t)
represents the memory kernel for desorption at all sites over the z = 1 surface (that is for
(n,m, l = 1)). It is clear that, when δ1 = γ1 = γ2 = γ (and α1 = β1 = 0), we recover
the same set of equations used in [4–6]. Also, if in addition we have that K (t) → θ δ(t),
where δ(t) is the Dirac delta function, the system of Markovian equations used in [2, 3] is
recovered.

Taking the Fourier transform with respect to the x and y variables and the Laplace
transform with respect to the time t in the above equations, we obtain

sG(kx , ky, 1; s)− P(kx , ky, 1, t = 0) = δ1G(kx , ky, 2; s)+ A1(kx, ky)G(kx, ky, 1; s)

− K (s)G(kx, ky, 1; s), for l = 1

sG(kx , ky, 2; s)− P(kx , ky, 2, t = 0) = A(kx, ky)G(kx, ky, 2; s)+ K (s)G(kx, ky, 1; s)

− δ1G(kx , ky, 2; s)+ γ1G(kx, ky, 3; s)− γ2G(kx, ky, 2; s), for l = 2

sG(kx , ky, l; s)− P(kx , ky, l, t = 0) = A(kx, ky)G(kx, ky, l; s)+ γ1[G(kx, ky, l + 1; s)

− G(kx, ky, l; s)] + γ2[G(kx, ky, l − 1; s)− G(kx, ky, l; s)], for l � 3.

(2)

Here we have used the same definitions as in [2–5], and also

A(kx, ky) = 2α[cos(kx)− 1] + 2β[cos(ky)− 1],
A1(kx, ky) = 2α1[cos(kx)− 1] + 2β1[cos(ky)− 1].
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Clearly, the above equations for G(kx, ky, l; s)] are similar to equation (2) in [3], with
K (s) instead of δ, the adsorption probability δ1, and the unbiased γ replaced by γ1 and γ2.
Therefore all results obtained in [2, 3] remain valid for a non-Markovian dynamics when δ is
replaced by K (s), and the bias and the desorption probability are adequately included.

As our aim is to obtain information about the return probability to the plane z = 1, we
evaluate equations (2) at kx = ky = 0, or equivalently we sum over all sites of each z plane.
Hence we reduce the indicated system to

sG(0, 0, 1; s)− P(0, 0, 1, t = 0) = δ1G(0, 0, 2; s)− K (s)G(0, 0, 1; s), for l = 1

sG(0, 0, 2; s)− P(0, 0, 2, t = 0) = K (s)G(0, 0, 1; s)− δ1G(0, 0, 2; s)

+ γ1G(0, 0, 3; s)− γ2G(0, 0, 2; s), for l = 2

sG(0, 0, l; s)− P(0, 0, l, t = 0) = γ1[G(0, 0, l + 1; s)− G(0, 0, l; s)]
+ γ2[G(0, 0, l − 1; s)− G(0, 0, l; s)], for l � 3 (3)

were we used that A(0, 0) = A1(0, 0) = 0.
Through the previous equations, we can now define P(z = j, t), the probability of being

on the plane z = j at time t , due to the fact that at z = 1 plane at time t = 0. However,
we can do more. With a slight change in the equations, we can generalize and work with
P(z = l; t|lo; t = 0), the probability of finding the particle at a point on z = 1 at time t , if it
was initially at z = lo at time t = 0, P̂(z = 1, s|lo; t = 0) being its Laplace transform. Hence,
the equations governing this probability are

s P̂(z = 1, s|lo; t = 0)− P(z = lo, t = 0) = δ1 P̂(z = 2, s|lo; t = 0)

− K (s)P̂(z = 1, s|lo; t = 0), for l = 1

s P̂(z = 2, s|lo; t = 0)− P(z = lo, t = 0) = K (s)P̂(z = 1, s|lo; t = 0)

− δ1 P̂(z = 2, s|lo; t = 0)+ γ1 P̂(z = 3, s|lo; t = 0)

− γ2 P̂(z = 2, s|lo; t = 0), for l = 2

s P̂(z = l, s|lo; t = 0)− P(z = lo, t = 0) = γ1[P̂(z = l + 1, s|lo; t = 0)

− P̂(z = l, s|lo; t = 0)] + γ2[P̂(z = l − 1, s|lo; t = 0)

− P̂(z = l, s|lo; t = 0)] for l � 3. (4)

As in our previous works, we can solve this set of equations by reiteratively using Dyson’s
formula.

2.2. Return probability and return time

As indicated in section 1, we are interested in the problem of return to the reference plane
(z = 1). In order to study such a problem, we define fret(t), the return probability to the z = 1
plane for the first time within the interval (t, t +dt), as the walker started on the reference plane
z = 1 at t = 0. Similarly to what has been done in [2], we write fret(t) as the convolution of
two functions

fret(t) =
∫ t

0
ψ(t ′) f2→1(t − t ′) dt ′, (5)

where f2→1(t) dt is the probability of arrival for the first time at the plane z = 1 between
(t, t + dt), due to the fact that the walker was at the plane z = 2 at t = 0; and ψ(t) is the
probability of jumping from plane z = 1 to plane z = 2 (in our case, for both Markovian and
non-Markovian situations, it is the desorption probability).

5
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Exploiting Siegert’s formula [25, 32] we obtain

f2→1(s) = P̂(z = 1, s|z = 2; t = 0)

P̂(z = 1, s|z = 1; t = 0)
. (6)

Let us remark that, as was indicated before, P̂(z = 1, s|z = 2; t = 0) could be obtained
through a reiterative application of Dyson’s formula. The result for f2→1(s) is

f2→1(s) = 2 δ1

2 δ1 − γ1 + γ2 + s + [
(γ1 + γ2 + s)2 − 4 γ1γ2

] 1
2

. (7)

Let us remember that δ1 is the transition probability from any site on plane z = 2 to the plane
z = 1, or the ‘adsorption’ probability, while γ1 and γ2 are the transition probabilities, per unit
time, from any point of the plane z = l + 1 (with l = 2, 3, . . .) to the plane z = l, and from
plane z = l (with l = 2, 3, . . .) to the plane z = l + 1, respectively.

The mean return time to the z = 1 plane, 〈t〉frt , is the sum of two contributions. The first
one is the desorption time, that results from ψ(t):

〈t〉des =
∫ ∞

o
t ψ(t) dt, (8)

while the second, which is given by

〈t〉2→1 = γ1

δ1(γ1 − γ2)
, (9)

corresponds to the mean time to jump from the plane z = 2 to the plane z = 1.

2.3. Asymptotic results

Here we show the results of asymptotic long-time system behaviour that, as is usual, are
obtained by resorting to Tauberian theorems [32]. Such results are obtained for two cases:
when the waiting time function has a short-time or a long-time tail. We assume that, when
s 
 1, ψ(s) ∼ 1 − Bsν with 0 < ν < 1 for the case of a long tail, and ν = 1 for the short
tail case. In the case of short-tail waiting time densities we have B = 〈t〉des. Consequently, in
this limit K (s) ∼ 1

B s1−ν . In this expression we can obtain the asymptotic behaviour for the
density probability of finding the walker on the reference plane. This can be achieved by means
of Siegert’s formula when both the initial and the final planes are the same:

fret(s) = 1 − 1 − ψ(s)

s

1

P̂(z = 1, s|z = 1; t = 0)
. (10)

We can also compute the average number of times that the particle returns to the z = 1
reference plane. In order to obtain such an average we start by considering the probability that
the particle returns exactly n times to the reference plane at time t . In Laplace space this is
given by


n(s) = ( fret(s))
n

(
1 − fret(s)

s

)

. (11)

Hence, also in Laplace space, the average number of returns to the reference plane is given by

〈n(s)〉 = 1

s

(
fret(s)

1 − fret(s)

)

. (12)

Considering the different possibilities we have two cases: (i) γ 1 > γ 2; and (ii) γ 1 =
γ 2 = γ .

6
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2.3.1. Short tail

• γ 1 > γ 2

P(z = 1, t|z = 1; t = 0) →
{

1 + γ1

Bδ1 (γ1 − γ2)

}−1

(13)

〈n(t)〉 →
(

B + γ1

δ1 (γ1 − γ2)

)−1

t; (14)

• γ 1 = γ 2 = γ

P(z = 1, t|z = 1; t = 0) → B δ1√
πγ

t− 1
2 , (15)

〈n(t)〉 → δ1√
π γ

t
1
2 . (16)

The above results are the expected ones for a short-tail case. Clearly, for γ1 < γ2, P̂(z =
1, t|z = 1; t = 0) decays to zero (exponentially), while for γ1 = γ2 it also decays, but much
slower (potentially).

2.3.2. Long tail

• γ 1 > γ 2

P(z = 1, t|z = 1; t = 0) → 1, (17)

〈n(t)〉 → δ1

B �(ν + 1)
tν . (18)

• γ 1 = γ 2 = γ

Here we have different asymptotic behaviours depending on the range of values of ν.

P(z = 1, t|z = 1; t = 0) →

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 0 < ν < 1
2

Bδ1

(Bδ1 + √
γ )
, ν = 1

2

Bδ1√
γ �( 3

2 − ν)
t

1
2 −ν, 1

2 < ν < 1,

(19)

〈n(t)〉 →

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ1

B �(ν + 1)
tν , 0 < ν < 1

2

1

(Bδ1 + √
γ )

√
π

t
1
2 , ν = 1

2

δ1√
γ π

t
1
2 , 1

2 < ν < 1.

(20)

In general, we observe the same time dependence for P(z = 1, t|z = 1; t = 0) as in [6], but
with different coefficients and, if δ1 = γ1, we recover the previous results. However, if for any
reason we need to describe the adsorption phenomenon by a non-Markovian process, it is clear
that we should expect changes in the time dependence.

3. Results

In this section we show the results obtained making both the Laplace transform of the
previously indicated expressions for fret(s) and P̂(z = 1, s|z = l0; t = 0), as well as Monte
Carlo simulations. As was discussed in previous works [2–6], for a general case, the Laplace

7
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transform of the relevant quantities usually cannot be analytically inverted. This occurs for
fret(s) and P̂(z = 1, s|z = l0; t = 0) in the present case; hence we have been forced to employ
a numerical inversion method [33]. The efficacy of such a method was established in [2–6],
where it was shown that it is a reliable tool and that we can trust the results in those cases
where analytical results are not accessible.

3.1. Desorption dynamics

In order to describe the desorption dynamics from the surface, as in [6], we have used two
families of waiting time densities (ψ(t)). The first one has been extensively exploited in
modelling non-Markovian situations (see also [32]). The reasons for its wide use are its
versatile functional form and its simplicity that allows one to take into account a spread of
transition rates in a controllable way [34]. When only one transition rate is present a Markovian
description is reobtained: the memory kernel becomes a Dirac δ-function. The form is

ψ(t) = θa
(θat)(a−1)

�(a)
e−θat , (21)

where a is a positive integer and �(a) is the gamma or factorial function. It is worth
remarking here on two important facts about this family of functions. First, as can be seen
from equation (21), there are two parameters which characterize the function. The parameter
a, called the Markovianicity parameter, defines the departure from the Markovian behaviour or
degree of non-Markovianicity of the function (a = 1 corresponds to the Markovian case while
a 	= 1 corresponds to the non-Markovian one), while the parameter θ is the ‘average desorption
rate’. Second, as shown in [35], the mean value of these waiting time densities is

〈t〉 =
∫ ∞

0
tψ(t) dt = θ−1, (22)

that is the ‘average desorption time’ does not depend on the a parameter, but is only function
of the desorption rate. For the form of this family of functions, see figure 1 in [35].

In order to analyse the long-time tail case, we used a second family of desorption waiting
time density functions that, defined in the Laplace domain [36], has the form

ψ(s) = 1

1 + ( s
φ
)ν
, 0 < ν < 1. (23)

However, as φ amounts to only a change in the time scale, we adopted φ = 1. We have also
fixed the parameters α, β , and γ1, all equal to one.

3.2. Numerical transformation and simulation results

Figures 1 and 2 show the time dependence of fret(t) for several cases with the short-time tail
distribution indicated in equation (21). In figure 1 we have the comparison between the results
of Monte Carlo simulations against the numerical Laplace inversion [33] of fret(s), with the
same good agreement we have found in previous works [2–6]. The theoretical results are only
for non-Markovian desorption (a 	= 1) and the adsorption probability is different from the bias.
In all cases we have averaged over 106 realizations.

In figure 2 we have shown the time dependence of fret(t) for different situations. Here we
have cases where the bias in the bulk is larger or smaller than the bias for adsorption. However,
there is only a small difference between the different situations.

In both figures a transient oscillatory behaviour is apparent. The origin of such oscillations
has been explained in [5] and also arose in [6], and has been shown to be related with θ , the
desorption rate. It was indicated that the oscillations only appear in the non-Markovian case

8
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Figure 1. Temporal evolution of fret(t), the return probability distribution to the plane z = 1, for the
case of a short-tail distribution. Here we have adopted α = β = 1, θ = 0.01, a = 50, δ1 = 3 and
γ1 = 1. In the left panel we have the case γ2 = 0.3333, while in the right panel γ2 = 1.222 22. The
continuous line corresponds to simulations, while the dotted line corresponds to numerical Laplace
transformation of the theoretical one.

Figure 2. Theoretical temporal evolution of fret(t), the return probability distribution to the plane
z = 1, for the case of a short-tail distribution. Here we have adopted α = β = 1, θ = 0.01, a = 50,
γ1 = 1. In the left panel we have γ2 = 0.428 57; the dashed line corresponds to δ1 = 3.857 13,
the continuous one to δ1 = 1, and the dotted to δ1 = 0.285 71. In the right panel the dotted line
corresponds to γ2 = 0.428 57 and δ1 = 5.666 66, and the continuous line to γ2 = 3.2222 and
δ1 = 2.6363.

and are due to the particular behaviour of the family of waiting time densities defined above.
When the Markovianicity parameter tends to infinity, a  1, it is well known that ψ(t) tends
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Figure 3. Theoretical temporal evolution of P(z = 1, t), the probability distribution of finding
the particle on the plane z = 1, for the case of a short-tail distribution. Here we have adopted
α = β = 1, θ = 0.01, a = 50 and γ1 = 1. On the top left panel γ2 = 1.222 22. The dashed line
corresponds to δ1 = 1.833, the continuous one to δ1 = 1, and the dotted one to δ1 = 0.5238. On
the top right panel γ2 = 0.428 57. The dashed line corresponds to δ1 = 3.857 13, the continuous
one to δ1 = 1, and the dotted one to δ1 = 0.285 71. For the lower panel we have δ1 = 4.888 88.
The dotted line corresponds to the numerical Laplace transform, while the continuous one is the
numerical simulation.

towards a Dirac δ function: ψ(t) → δ(t − θ−1). This fact implies a kind of ‘periodicity’, as,
on average, there is a desorption after each elapsed �t � θ−1 period.

In figure 3 we depict several different situations for the behaviour of P(z = 1, t). In the
lower panel the good agreement between the numerical Laplace transform and Monte Carlo
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Figure 4. Theoretical temporal evolution of fret(t), the return probability distribution to the plane
z = 1, for the case of a long-tail distribution. Here we have adopted α = β = 1, θ = 0.01,
ν = 0.9 and γ1 = 1. In the left top panel we have γ2 = 1.222 22. The dashed line corresponds to
δ1 = 1.833 33, the continuous one to δ1 = 1, and the dotted one to δ1 = 0.5238. For the top right
panel we have γ2 = 0.428 57. The dashed line corresponds to δ1 = 3.857 13, the continuous one
to δ1 = 1, and the dotted one to δ1 = 0.285 71. In the lower panel, the dashed line corresponds
to γ2 = 2.428 57 and δ1 = 5.666 66, while the continuous one corresponds to γ2 = 3.2222 and
δ1 = 2.6363.

simulations is again apparent. In the upper panels we see the differences between the different
cases (with lower or larger bulk bias than the adsorption one). It is clear that those cases show
the possibility of detecting the differences between them.

Figures 4 and 5 show the cases of long-time tails, as given in equation (23). In these
cases it is not possible to compare with simulations. However, due to the good agreement
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Figure 5. Theoretical temporal evolution of P(z = 1, t), the probability distribution of finding
the particle on the plane z = 1, for the case of a long-tail distribution. Here we have adopted
α = β = 1, θ = 0.01, ν = 0.9 and γ1 = 1. In the top left panel we have γ2 = 1.222 22.
The dashed line corresponds to δ1 = 1.833, the continuous one to δ1 = 1, and the dotted one
to δ1 = 0.5238. In the top right panel we have γ2 = 0.428 57. The dashed line corresponds to
δ1 = 3.857 13, the continuous one to δ1 = 1, and the dotted one to δ1 = 0.285 71. In the lower
panel we have that the dashed line corresponds to the case γ2 = 2.428 57 and δ1 = 5.666 666, while
the continuous one corresponds to γ2 = 3.222 222 and δ1 = 2.6363.

found before, and as indicated previously, we can trust the numerical method for obtaining the
Laplace transform. Again, for the case of fret(t) there are only small differences between the
different cases, but in the case of P(z = 1, t) (figure 5) there are possibilities of detecting
differences due to the changes of the adsorption probability.

In addition to the previously indicated results, in all cases we have verified that the
asymptotic behaviour for those quantities is fulfilled.
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4. Conclusions

We have studied the evolution of particles making an effective diffusion on a surface. The
diffusion is actually performed both on the surface and across the bulk surrounding the surface,
resulting in the so-called bulk-mediated surface diffusion phenomenon. The relevant feature of
this work was to present an analytical model for non-Markovian desorption from the surface
also including the effect of an external (normal to the surface) field, through a biased behaviour
in the normal direction. In addition we have considered the influence of a Markovian absorption
probability. For the bulk that surrounds the surface we have considered that it is semi-infinite,
the particles undergoing a Markovian motion there. The main goal of the present work was
to study the influence of the indicated aspects on fret(t), the return probability to the interface
z = 1, as well as 〈t〉frt , the mean return time.

We presented an evaluation of the first passage time density to the original (z = 1) plane
through the evaluation of the temporal evolution of P(z = 1, t), the conditional probability
of finding the particle on the surface at time t since the particle was at z = lo at t = 0, as
well as for fret(t), the return probability. In order to do such an evaluation we have reduced
the previously exploited set of master equations eliminating the detailed information about the
diffusion on each plane. Let us stress that, as is apparent from equations (8) and (9), the mean
return time to the z = 1 plane is finite only if both the mean desorption time 〈t〉des and the
mean adsorption time 〈t〉ads are finite. As for unbiased infinite systems the mean adsorption
time is always infinite, no matter what the value of the adsorption probability δ1 is, the results
obtained by different theoretical models based on a finite waiting time between successive bulk
excursions [7, 8] should be understood as stated in section 1 and in [2–6]. We also want to
remark that the inclusion of a Markovian adsorption (characterized by δ1) has the effect of
changing (increasing or reducing) the percentage of particles that asymptotically remain at the
plane z = 1. Such a percentage is determined by the competition between the desorption and
the excursions in the bulk. A remarkable aspect is the oscillatory behaviour found for the case
of short-time tail distribution.

It is worth remarking here on an important aspect of the present approach. Through the
above results we have shown that the behaviour of fret(t) and of P(z = 1, t) are strongly
dependent on both the desorption mechanism and the effect of bias. As the effective dispersion
and the percentage of particles that remain in z = 1 are measurable magnitudes [8], they may
be used to investigate the characteristic and fundamental parameters of the desorption processes
under the effect of a field.
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